Министерство просвещения Российской Федерации Нижнетагильский государственный социально-педагогический институт (филиал) федерального государственного автономного образовательного учреждения высшего образования «Российский государственный профессионально-педагогический университет»

Факультет естествознания, математики и информатики

Кафедра естественных наук и физико-математического образования

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ Б1.В.01.ДВ.06.02 ФИЗИКА АТОМА И ЯДРА

Уровень высшего образования Бакалавриат

44.03.05 Педагогическое образование Направление подготовки

(с двумя профилями подготовки)

Профили Естествознание и дополнительное образование

Форма обучения Очная Рабочая программа дисциплины «Физика атома и ядра». Нижнетагильский государственный социально-педагогический институт (филиал) ФГАОУ ВО «РГППУ», Нижний Тагил, 2021.-10 с.

Настоящая программа составлена в соответствии с требованиями федерального государственного образовательного стандарта высшего образования по направлению подготовки 44.03.05 Педагогическое образование (с двумя профилями подготовки).

Автор: доктор пед. наук, профессор кафедры ЕНФМ

Попов С.Е.

Программа одобрена на заседании кафедры ЕНФМ 18.03.2021 г., протокол № 7.

Trenf

Заведующий кафедрой ЕНФМ

Полявина О.В.

Houd

Программа рекомендована к печати методической комиссией факультета естествознания, математики и информатики 02.04.2021 г., протокол № 5.

Председатель методической комиссии ФЕМИ

Жасимова Н.З.

[©] Нижнетагильский государственный социальнопедагогический институт (филиал) ФГАОУ ВО «Российский государственный профессионально-педагогический университет», 2021. © С.Е. Попов, 2021.

СОДЕРЖАНИЕ

1. Цель и задачи освоения дисциплины	4
2. Место дисциплины в структуре образовательной программы	4
3. Результаты освоения дисциплины	4
4. Структура и содержание дисциплины	5
4.1. Объем дисциплины и виды контактной и самостоятельной работы	5
4.2. Содержание и тематическое планирование дисциплины	5
4.3. Содержание разделов (тем) дисциплины	6
5. Образовательные технологии	7
6. Учебно-методические материалы	7
6.1. Методические указания по организации и проведению лабораторных заня-	7
тий	
6.2. Задания и методические указания по организации самостоятельной работы	8
студента	
7. Учебно-методическое и информационное обеспечение	10
8. Материально-техническое обеспечение дисциплины	10

1. ЦЕЛЬ И ЗАДАЧИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Цель дисциплины: сформировать у студентов целостный, соответствующий современному уровню развития науки взгляд на дискретную структуру и квантовые свойства материи, и на этой основе обеспечить подготовку квалифицированного учителя естествознания.

Задачи изучения дисциплины: при изучении курса студент должен овладеть:

- 1. Знаниями основных понятий и законов, описывающих структуру атома и ядра, поведение объектов микромира.
- 2. Навыками их применения для решения физических задач, объяснения разнообразных явлений микромира, принципов действия технических устройств.
- 3. Навыками проведения лабораторного и демонстрационного эксперимента из области квантовой физики.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Курс «Физика атома и ядра» завершает курс общей и экспериментальной физики, его содержание базируется на основных достижениях физической науки XX столетия. В нем органически сочетаются вопросы классической и современной (квантовой) физики с четким определением границ, в пределах которых справедливы те или иные физические концепции, модели и теории.

Дисциплина «Физика атома и ядра» является частью учебного плана по направлению подготовки 44.03.05 Педагогическое образование (с двумя профилями подготовки), профили «Естествознание и дополнительное образование». Дисциплина Б1.В.01.ДВ.06.01 «Физика атома и ядра» включена в Блок Б.1 в модуль дисциплин по выбору. Дисциплина реализуется в НТГСПИ (ф) РГППУ на кафедре естественных наук и физикоматематического образования.

Для освоения дисциплины «Физика атома и ядра» используются знания и умения, сформированные при изучении школьных предметов «Физика» и «Математика», предыдущих разделов курса физики. Овладение материалом данной дисциплины является необходимой основой для изучения таких дисциплин, как «Астрономия», «Теория и методика обучения естествознанию», «История естествознания» и др.

3. РЕЗУЛЬТАТЫ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Процесс изучения дисциплины направлен на формирование и развитие следующих компетенций:

Категория	Код и наименование	Код и наименование индикатора достижения компетенции
(группа)	компетенции	
компетенций		
Системное и	УК-1 Способен осу-	ИУК 1.1. Знает основные источники и методы поиска информа-
критическое	ществлять поиск, кри-	ции, необходимой для решения поставленных задач.
мышление.	тический анализ	ИУК 1.2. Умеет осуществлять поиск информации для решения
	и синтез информации,	поставленных задач, применять методы критического анализа и
	применять системный	синтеза информации.
	подход для решения	ИУК 1.3. Грамотно, логично, аргументировано формирует соб-
	поставленных задач.	ственные суждения и оценки; отличает факты от мнений, интер-
		претаций и оценок; применяет методы системного подхода для
		решения поставленных задач.
Профессио-	ПК-6 Способен ориен-	ИПК 6.1. Знает общие понятия, теории, правила, законы,
нальные ком-	тироваться в вопросах	закономерности предметных областей биология, химия, физика
петенции.	естествознания на со-	определяющие взаимосвязь живых организмов и их
	временном уровне раз-	разнообразия с окружающей их средой и применяет их в
	вития научных направ-	профессиональной деятельности;
	лений в области физи-	принципы функционирования живых систем и их изменение под
	ки.	влиянием антропогенных факторов.

ИПК 6.2. Умеет объяснять физико-химические основы биологи-
ческих процессов и; ориентироваться в вопросах физико-
химического и биохимического единства органического мира.
ИПК 6.3. Владеет классическими и современными методами и
методическими приемами организации и проведения естествен-
нонаучного эксперимента, планированию, анализу и оценке ре-
зультатов исследований в предметных областях биология, хи-
мия, физика.

В результате изучения дисциплины студент должен:

Знать:

концептуальные и теоретические основы квантовой физики, ее место в общей системе физических наук.

Уметь:

- объяснять явления и решать стандартные задачи по разделам курса;
- планировать и осуществлять учебный эксперимент, организовывать экспериментальную и исследовательскую деятельность;
- оценивать результаты эксперимента, готовить отчетные материалы о проведенной экспериментальной работе;
- анализировать информацию по физике из различных источников, структурировать, представлять ее в доступном для других виде;
- приобретать новые знания по физике, используя современные информационные и коммуникационные технологии.

4. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

4.1. Объем дисциплины и виды контактной и самостоятельной работы

Общая трудоемкость дисциплины составляет 3 зач. ед. (108 часов), их распределение по видам работ представлено в таблице.

Распределение трудоемкости дисциплины по видам работ

	Форма обучения
Контактная работа, в том числе: Пекции Пабораторные работы Самостоятельная работа, в том числе: Изучение теоретического курса Самоподготовка к текущему контролю знаний	Очная
	8 семестр
Общая трудоемкость дисциплины по учебному плану	108
Контактная работа, в том числе:	38
Лекции	10
Лабораторные работы	28
Самостоятельная работа, в том числе:	43
Изучение теоретического курса	20
Самоподготовка к текущему контролю знаний	23
Подготовка к экзамену, сдача экзамена	27

4.2. Учебно-тематический план

		Контакті	ная работа		
Наименование разделов и тем дисциплины (модуля)	Всего, часов	Лекции	Лаб. работы	Самост. работа	Формы текущего контроля успеваемости
Введение.	6	1	2	3	Опрос, тест

Тема 2. Элементы квантовой механики. Тема 3. Физика атомов и	13	2	4	7	Опрос, тест, отчет по лабораторной работе Опрос, тест, отчет по
молекул. Тема 4. Физика ядра атома.	21	2	8	11	лабораторной работе Опрос, тест, отчет по
Тема 5. Основы физики элементарных частиц.	11	1	4	6	лабораторной работе Опрос, тест, отчет по лабораторной работе
Экзамен	27			27	1 1 1
Всего по дисциплине	108	10	28	70	

Лабораторные занятия

3.5	Наименование лабораторных работ				
№ темы					
Введение	Вводное занятие. Содержание лабораторного практикума.	2			
1	Опыт Франка и Герца.	2			
1	Спектроскопия водорода. Постоянная Ридберга.	4			
2	Изучение соотношения неопределенностей для фотонов.	2			
2	Изучение туннельного диода.	2			
3	Исследование спектра поглощения Солнца.	2			
3	Спектроскопия гелия и неона.	2			
4	Регистрация ядерных излучений счетчиком Гейгера-Мюллера.	2			
4	Измерение содержания калия по его естественной радиоактивности.	2			
4	Измерение поглощения бета-излучения в веществе.	2			
4	Измерение коэффициента ослабления гамма-излучения.	2			
5	Основы дозиметрии.	4			

4.3. Содержание разделов (тем) дисциплины

(Вопросы для самостоятельного изучения выделены курсивом)

Введение. Предмет и задачи квантовой физики. Структура курса. Исторический обзор развития квантовой физики.

Тема 1. Теория атома водорода по Резерфорду-Бору.

Закономерности в спектре атома водорода. Формула Бальмера. Постоянная Ридберга. Опыты Резерфорда. Модель атома Резерфорда. Постулаты Бора. Опыт Франка и Герца. Элементарная теория водородоподобного атома Бора. Ограниченность теории Бора.

Тема 2. Элементы квантовой механики.

Гипотеза де Бройля. Опыты Дэвиссона и Джермера. Корпускулярно-волновой дуализм свойств вещества. Универсальность корпускулярно-волнового дуализма.

Соотношение неопределенностей.

Волновая функция, ее физический смысл. Свойства волновой функции. Общее уравнение Шредингера. Уравнение Шредингера для стационарных состояний. Собственные функции и собственные значения энергии.

Тема 3. Физика атомов и молекул.

Атом водорода в квантовой механике. Квантование энергии. Квантовые числа. Правила отбора. Вид волновых функций.

Опыт Штерна и Герлаха. Спин электрона. Принцип неразличимости тождественных частиц. Фермионы и бозоны.

Принцип Паули. Распределение электронов в атоме по состояниям. Периодическая система элементов Менделеева.

Тема 4. Физика ядра атома.

Состав и характеристики ядра атома. Дефект массы и энергия связи. Модели атомного ядра. Ядерные силы. Понятие о мезонной теории ядерных сил.

Радиоактивность. Радиоактивное излучение и его виды. Закон радиоактивного распада. Правила смещения. Активность радиоактивного вещества. Период полураспада. Закономерности α - распада. β - распад, нейтрино. Гамма-излучение и его свойства. Методы наблюдения и регистрации радиоактивных излучений и частиц. Применение радиоактивности. Основы дозиметрии и радиационной безопасности.

Ядерные реакции, их основные типы. Позитрон. β^+ - распад. Электронный захват. Ядерные реакции под действием нейтронов.

Реакции деления ядер. Критическая масса. Цепная реакция. Ядерные реакторы на тепловых и быстрых нейтронах. Проблемы ядерной энергетики.

Реакции синтеза атомных ядер, условия их осуществления. Проблема управляемых термоядерных реакций.

Тема 5. Основы физики элементарных частиц.

Космическое излучение. Общие сведения об элементарных частицах. Фундаментальные взаимодействия. Частицы и античастицы. Классификация элементарных частиц. Лептоны и адроны. Мезоны и барионы. Кварки.

5. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

Проблемное, практико-ориентированное обучение. Математическое моделирование физических явлений, лабораторный практикум.

6. УЧЕБНО-МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ

6.1. Методические указания по организации и проведению лабораторных занятий

Лабораторный практикум по квантовой физике формирует тот исходный уровень знаний, умений и навыков по постановке физического эксперимента в области явлений микромира, на котором в дальнейшем базируются лабораторные занятия по методике школьного физического эксперимента.

Основные задачи практикума:

- изучение на практике экспериментальных методов и способов научных исследований в области физики квантовых явлений;
 - экспериментальное подтверждение важнейших положений лекционного курса;
- углубление и закрепление теоретических знаний посредством сопоставления их с опытом;
- формирование умений и навыков постановки и проведения физического эксперимента с разными целевыми установками, обработки и оценки его результата;
- знакомство с приборами, оборудованием и материалами, необходимыми для постановки физического эксперимента по квантовой физике, формирование умений и навыков правильного обращения с ними с учетом инструктивных требований и правил техники безопасности.

Специальные предметно-обобщенные знания, умения и навыки, формируемые лабораторным практикумом по исследованию квантовых явлений:

- 1. Знание лабораторных методов измерения основных физически величин по разделу курса общей физики «Квантовая физика». Владение применением этих методов. Умение проводить измерение этих величин, в том числе, на школьном оборудовании.
- 2. Знание конструкции, правил использования физических приборов и оборудования, составляющих экспериментальную базу практикума; понимание принципов действия

приборов, умение методически правильно применять приборы и оборудование в проведении эксперимента.

- 3. Знание основ теории погрешностей физических измерений, математических методов обработки результатов измерений и представления экспериментальных данных; умение оценивать границы точности прямых и косвенных измерений, практически выполнять обработку результатов и представлять экспериментальные данные в графической и аналитической форме.
- 4. Умение применять теоретические знания для анализа экспериментально исследуемых квантовых явлений и математически моделировать их в системе базовых понятий и параметров.
- 5. Умение переходить от наглядно-пространственного описания явлений к отражению их в аналитической и графической форме.
 - 6. Умение пользоваться учебной и справочной литературой.

Теоретический материал, подлежащий изучению при подготовке к выполнению каждой лабораторной работы, приводится в методических указаниях практикума. Там же указывается список дополнительной литературы для более подробного изучения теории, излагается перечень оборудования и содержание экспериментальной части, описаны методика выполнения эксперимента, требования по отчету и приведены контрольные вопросы допуска к выполнению работы и зачета по ней.

6.2. Задания и методические указания по организации самостоятельной работы студента

Структура самостоятельной учебной работы:

- изучение теоретического материала по лекциям и учебной литературе, подготовка письменных ответов на вопросы для самопроверки его усвоения по основным темам программы;
 - решение физических задач в домашних условиях;
- подготовка ответов на вопросы допуска к выполнению работ лабораторного практикума и письменных отчетов по результатам их выполнения.

Содержание текущей аттестации:

- знание теоретического материала по основным темам дисциплины;
- умения решать физические задачи различными методами;
- навыки проведения физического эксперимента и обработки его результатов.

Формы контроля текущей аттестации:

- контроль качества усвоения теоретического материала осуществляется в форме тематических физических диктантов;
- контроль умений решать физические задачи проводится по результатам выполнения домашних заданий к практическим занятиям и домашних контрольных работ;
- контроль экспериментальных умений и навыков осуществляется в форме собеседований при зачетах результатов выполнения и оформления каждой лабораторной работы.

Вопросы самоконтроля:

Введение.

- 1. Дайте определение понятию «квант».
- 2. Перечислите явления, указывающие на квантовую природу излучения.
- 3. Сформулируйте предмет курса квантовой физики.
- 4. Приведите общую структуру курса.
- 5. Кратко опишите историю развития квантовой физики.

Тема 1. Теория атома водорода по Резерфорду-Бору.

- 1. Опишите модели атома Томсона и Резерфорда.
- 2. Приведите экспериментальную схему опытов Резерфорда.
- 3. В чем заключаются выводы Резерфорда?

- 4. Нарисуйте сериальную зависимость в спектре атома водорода.
- 5. Какая из серий лежит в видимой области?
- 6. Напишите и поясните формулу Бальмера.
- 7. Поясните физический смысл постоянной Ридберга.
- 8. Сформулируйте и поясните постулаты Бора.
- 9. Какие задачи они решают?
- 10. Опишите и поясните опыт Франка и Герца.
- 11. В чем проявляется ограниченность теории Бора?

Тема 2. Элементы квантовой механики.

- 1. Сформулируйте гипотезу де Бройля.
- 2. Опишите опыты Дэвиссона и Джермера.
- 3. В чем заключается универсальность корпускулярно-волнового дуализма?
- 4. Запишите и поясните соотношение неопределенностей.
- 5. Как оно проявляется? Приведите пример.
- 6. Что такое волновая функция? Что она описывает?
- 7. Поясните физический смысл волновой функции.
- 8. Приведите и поясните свойства волновой функции.
- 9. Запишите общее уравнение Шредингера. Поясните смысл, входящих в него параметров.
 - 10. Какие состояния квантовой системы называют стационарными?
 - 11. Запишите уравнение Шредингера для стационарных состояний.
 - 12. Поясните понятия «собственные функции» и «собственные значения энергии».

Тема 3. Физика атомов и молекул.

- 1. Запишите, как определяется потенциальная энергия взаимодействия электрона с ядром в атоме водорода.
 - 2. Запишите и поясните уравнение Шредингера.
 - 3. Какие значения энергии может принимать электрон в атоме?
 - 4. Почему главное квантовое число называют главным?
 - 5. Какие еще квантовые числа отражают состояние электрона в атоме?
 - 6. Какие значения они могут принимать?
 - 7. Как графически отобразить волновую функцию?
 - 8. Что такое спин электрона?
 - 9. Какие частицы называют фермионами, а какие бозонами? Приведите примеры.
 - 10. В чем заключается принцип неразличимости квантовых частиц?
 - 11. Сформулируйте принцип Паули.
 - 12. Как происходит заполнение электронных оболочек в атоме?
 - 13. Поясните структуру периодической системы элементов Д.И. Менделеева.
 - 14. Где на практике применяют рентгеновское излучение?
 - 15. Как устроены и как работают лазеры?

Тема 4. Физика ядра атома.

- 1. Назовите размеры атома и ядра атома.
- 2. Укажите состав ядра.
- 3. Какие ядра называют изотопами, какие изобарами?
- 4. Что называют дефектом массы ядра?
- 5. Как определяется энергия связи ядра?
- 6. Какие силы называют ядерными?
- 7. Какой вид фундаментальных взаимодействий они отражают?
- 8. Дайте определение радиоактивности.
- 9. Перечислите и охарактеризуйте виды радиоактивного излучения.
- 10. Запишите закон радиоактивного распада.
- 11. Какое время называют периодом полураспвда?
- 12. Приведите правила смещения для α распада и β распада.
- 13. Охарактеризуйте гамма-излучение, перечислите его свойства.

- 14. Какие существуют методы наблюдения и регистрации радиоактивных излучений и частиц.
 - 15. Какие явления называют ядерными реакциями?
 - 16. Приведите основные типы ядерных реакций.
 - 17. Как происходят ядерные реакции под действием нейтронов?
 - 18. Как происходят реакции деления ядер?
 - 19. Какую реакцию называют цепной реакцией?
 - 20. Как работает ядерный реактор?
 - 21. Что называют реакцией синтеза атомных ядер? Приведите пример.
 - 22. Укажите условия протекания реакцией синтеза.
- 23. В чем заключаются проблемы осуществления управляемых термоядерных реакший?

Тема 5. Основы физики элементарных частиц.

- 1. Охарактеризуйте космическое излучение.
- 2. Какие частицы называют мюонами? Приведите схемы распада.
- 3. Какие частицы называют мезонами? Приведите схемы распада π -мезонов.
- 4. Какие частицы называют античастицами? Приведите пример.
- 5. Какие законы сохранения выполняются для всех типов взаимодействий элементарных частиц?
 - 6. На какие группы принято делить элементарные частицы?
 - 7. Назовите критерии, по которым частицы относят к той или иной группе.
 - 8. Зачем нужна гипотеза о кварках?

7. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБСПЕЧЕНИЕ

Основная литература:

- 1. Грабовский Р.И. Курс физики. М.: Академия, 2017. 608 с.
- 2. Кузнецов, С.И. Курс физики с примерами решения задач. Часть III. Оптика. Основы атомной физики и квантовой механики. Физика атомного ядра и элементарных частиц [Электронный ресурс]: учебное пособие / С.И. Кузнецов. СПб.: Лань, 2018. 336 с.
- 3. Савельев, И.В. Курс общей физики. В 5-и тт. Том 5. Квантовая оптика. Атомная физика. Физика атомного ядра и элементарных частиц. СПб.: Лань, 2019. 384 с.
 - 4. Трофимова Т.И. Курс физики. М.: Академия, 2017. 560 c.

Дополнительная литература:

- 5. Белова И.В., Елкин С.В., Клячин Н.А., Матрончик А.Ю. Лабораторный практикум курса общей физики. Атомная физика. М.: МИФИ, 2018. 104 с.
- 6. Попов С.Е., Матвеев О.П. Методические указания для организации самостоятельной работы при изучении физики. Нижний Тагил: HTГСПА, 2017.-43c.
- 7. Шпольский Э.В. Атомная физика. Том 1. Введение в атомную физику. СПб.: Лань, $2020.-560~\rm c.$

Программное обеспечение и Интернет-ресурсы

http://fizzzika.narod.ru http://www.school.mipt.ru

8. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

- 1. Лекционная аудитория 209А.
- 2. Специализированная лаборатория квантовой физики 112В.
- 3. Мультимедиапроектор.
- 4. Кодограммы, учебные фильмы и таблицы, презентации к лекциям и семинарам.