Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Жуйкова Татьяна Валерьевна Министерство просвещения Российской Федерации

Должность: Директор Дата подписания: 05:07:2024 05:22:23 дата подписания: 05:07:2024 05:22:22:23 дата подписания: 05:07:2024 05:22:23 дата подписания: 05:07:2024 05:22:22 дата подписания: 05:07:2

«Российский государственный профессионально-педагогический университет»

Факультет естествознания, математики и информатики Кафедра естественных наук

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ **Б1.В.01.ДВ.03.01 «АКТУАЛЬНЫЕ ВОПРОСЫ ОРГАНИЧЕСКОЙ ХИМИИ»**

Уровень высшего образования Магистратура

Направление подготовки 44.04.01 Педагогическое образование

Профиль (программа магистратуры) Общая биология и химия

Форма обучения Заочная

Автор (ы) доцент Е.А. Раскатова

Одобрена на заседании кафедры естественных наук. Протокол от «16» февраля 2024 г. № 6.

Рекомендована к использованию в образовательной деятельности научно-методической комиссией факультета естествознания, математики и информатики. Протокол от «22» февраля 2024 г. № 6.

СОДЕРЖАНИЕ

1.	Цели и задачи освоения дисциплины	4
2.	Место дисциплины в структуре образовательной программы	4
3.	Результаты освоения дисциплины	4
4.	Структура и содержание дисциплины	5
	4.1. Объем дисциплины и виды контактной и самостоятельной работы	5
	4.2. Учебно-тематический план	6
	4.3. Содержание дисциплины	7
5.	Образовательные технологии	8
6.	Учебно-методические материалы	8
	6.1. Организация самостоятельной работы студентов	8
	6.2. Организация текущего контроля и промежуточной аттестации	9
7.	Учебно-методическое и информационное обеспечение	12
8.	Материально-техническое обеспечение дисциплины	13

1. ЦЕЛЬ И ЗАДАЧИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Цель дисциплины:

Познакомить студентов с современными направлениями развития органической химии, в первую очередь такими, как супрамолекулярная химия, выяснить взаимосвязи между структурой и свойствами веществ и получение на этой научной базе веществ и материалов с заданными свойствами.

Залачи:

- 1. Сформировать у магистрантов понимание общих закономерностей реакционной способности органических соединений в зависимости от их структуры.
- 2. Изучить возможности переходных состояний химического процесса, резонансных структур, статистических и динамических факторов реакций
- 3. Получить углубленные теоретические знания по ключевым и актуальным темам органической химии

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Дисциплина **Б1.В.01.ДВ.03.01** «Актуальные вопросы органической химии» является частью учебного плана магистратуры по направлению подготовки 44.04.01 Педагогическое образование, профили «Общая биология и химия». Дисциплина Б1.В.01.ДВ.03.01 «Актуальные вопросы органической химии» включена в Блок Б.1 «Дисциплины (модули)», Часть, формируемая участниками образовательного процесса, Б1.В.01.ДВ.03 Дисциплины (модули) по выбору 3 (ДВ.3). Дисциплина установлена вузом. Реализуется в НТГСПИ (ф) РГППУ на кафедре естественных наук.

3. РЕЗУЛЬТАТЫ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Процесс изучения дисциплины направлен на формирование и развитие следующих компетенций:

компетенции:		,
Категория	Код и наименование	Код и наименование индикатора достижения компетенции
(группа)	компетенции	
компетенций		
Образователь	ПК-1. Способен	ИПК 1.1. Знает: концептуальные положения и требования
ный процесс	организовывать и	к организации образовательного процесса по биологии и
по биологии и	реализовывать	химии, определяемые ФГОС соответствующего уровня
химии	процесс обучения	образования;
	биологии и химии в	компоненты и характеристику современного
	образовательных	образовательного процесса; особенности проектирования
	организациях	образовательного процесса по биологии и химии в
	соответствующего	образовательных организациях соответствующих уровней
	уровня образования	образования;
		структуру процесса обучения биологии и химии в
		образовательном учреждении общего образования,
		образовательных организациях СПО и ВО; предметное
		содержание, организационные формы, методы и средства
		обучения биологии и химии в образовательных
		организациях соответствующих уровней образования;
		современные образовательные технологии и основания для
		их выбора в целях достижения результатов обучения
		биологии и химии
		ИПК 1.2. Умеет: характеризовать процесс обучения
		биологии и химии как взаимосвязь процессов учения и
		преподавания;
		реализовывать взаимосвязь целей обучения биологии и
		химии и целей образования на соответствующих уровнях;

1	
	использовать различные информационные ресурсы для
	отбора содержания химико-биологического образования;
	проектировать предметную образовательную среду
	ИПК 1.3. Владеет: предметным содержанием, методикой
	обучения биологии и химии в образовательном
	учреждении общего образования и вузе;
	современными методами и технологиями обучения с
	учетом социальных, возрастных, психофизиологических и
	индивидуальных особенностей обучаемых в
	образовательных организациях разного уровня.
ПК-2. Способен	ИПК 2.1. Знает:
осуществлять поиск,	источники научной информации, необходимой для
анализ и обработку	обновления содержания химико-биологического
научной информации	образования и трансформации процесса обучения
в целях исследования	биологии и химии;
проблем химико-	методы работы с научной информацией;
биологического	приемы дидактической обработки научной информации в
образования	целях ее трансформации в учебное содержание.
	ИПК 2.2. Умеет:
	вести поиск и анализ научной информации;
	осуществлять дидактическую обработку и адаптацию
	научных текстов в целях их перевода в учебные материалы
	ИПК 2.3. Владеет:
	методами работы с научной информацией и учебными
	текстами.
ПК-3 Способен	ИПК 3.1. Знает:
ориентироваться в	общие понятия, теории, правила, законы, закономерности
вопросах биологии,	предметных областей биология, химия, экологи;
экологии и химии на	закономерности развития органического мира;
современном уровне	основные принципы технологических процессов
развития научных	химических производств и способен использовать
направлений в	полученные знания в профессиональной деятельности
данных областях	ИПК 3.2. Умеет:
данных ооластях	
	объяснять химические основы биологических процессов и
	физиологические механизмы работы различных систем и
	органов растений, животных и человека; ориентироваться
	в вопросах биохимического единства органического мира.
	ИПК 3.3. Владеет:
	классическими и современными методами и
	методическими приемами организации и проведения
	лабораторных, экспериментальных и полевых
	исследований в предметных областях биологии, химии,
	экологии.
]	

В результате освоения дисциплины магистр должен знать:

- -современное состояние и перспективы развития органической химии, её место в системе естествознания;
 - -механизмы основных типов органических реакций
- -основные механизмы органических реакций и механизм молекулярных перегруппировок.

уметь:

– изображать структурные и пространственные формулы органических соединений, обладающих конформационной, оптической и конфигурационной изомерией;

- -прогнозировать химические свойства органических соединений в зависимости от пространственного строения их молекул;
- решать проблемные вопросы органической химией с использованием теоретических и практических знаний по неорганической и физической химии;
 - выбрать наиболее эффективные методы синтеза сложных органических молекул.

владеть:

- -способами ориентации в профессиональных источниках информации (журналы, сайты, образовательные порталы);
- -лабораторными навыками и умениями при работе с оборудованием для проведения химического эксперимента с органическими веществами.

4. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

4.1. Объем дисциплины и виды контактной и самостоятельной работы

Общая трудоемкость дисциплины составляет 6 зач. ед. (216 часа), их распределение по видам работ представлено в таблице № 1.

Таблица № 1

Распределение трудоемкости дисциплины по видам работ

таспределение трудосикости дисц	пплипы по видам	paooi		
	Форма обучения Заочная			
Вид работы				
	III семестр	IV семестр		
Общая трудоемкость дисциплины по учебному плану	126	90		
Контактная работа, в том числе:	22	22		
Лекции	6	6		
Лабораторные работы	16	16		
Практические работы	-	-		
Самостоятельная работа, в том числе:	95	41		
Изучение теоретического курса	55	20		
Подготовка к выступлению с докладом	10	6		
Самоподготовка к текущему контролю знаний	40	15		
Выполнение контрольной работы	-	-		
Подготовка к зачету и экзамену, сдача зачета и экзамена	9	27		

4.2. Содержание и тематическое планирование дисциплины Тематический план дисциплины

Наименование разделов	Всего	Контактная работа		Сам.	Формы	
и тем дисциплины	часов	Лекции	Лаборат.	Практ.	работа	текущего
			работы	работы		контроля
						успеваемости
		II курс, II	И семестр			
Тема 1. Структурная изомерия. Таутомерия.	32	2	4	-	26	Самост. работа, собеседование, решение задач
Тема 2. Стереоизомерия. Оптическая изомерия. Конформационная изомерия. Геометрическая изомерия.	46	2	8	-	36	Самост. работа, собеседование, решение задач
Тема 3. Теория кислот и оснований Бренстеда — Лоури.	39	2	4	-	33	Самост. работа, собеседование, решение задач. Заслушивание сообщений

Подготовка к зачету	9					
ИТОГО:	126	6	16		95	
		II курс, Т	IV семестр			
Тема 4. Механизмы органических реакций.	22	2	8	1	12	Самост. работа, собеседование, решение задач
Тема 5.Термодинамика и кинетика органических реакций	19	2	4	-	13	Самост. работа, собеседование, решение задач
Тема 6. Супрамолекулярная. Возникновение, развитие, перспективы.	22	2	4	-	16	Самост. работа, собеседование, решение задач Заслушивание сообщений
Подготовка к экзамену:	27				_	
ИТОГО:	90	6	16		41	
всего:	216	12	32		136	

4.3. Содержание разделов (тем) дисциплины

ТЕМА 1. СТРУКТУРНАЯ ИЗОМЕРИЯ. ТАУТОМЕРИЯ (6 часов)

Лекция (2 часа)

Особый вид структурной изомерии. Таутомерное равновесие. Кето- енольная и лактим- лактамная таутомерия, нитро-изонитротаутомерия, кольчато-цепная на примерах ацетоуксусного эфира, азотистых оснований, нитросоединений, углеводов. Условия существования той или иной формы.

Лабораторная работа (4 часа)

Собеседование по теме, решение задач и упражнений

ТЕМА 2. СТЕРЕОИЗОМЕРИЯ (8 часов)

Лекция (4 часа)

Оптическая изомерия. Понятие о хиральности. Соединения с одним ассимитрическим атомом углерода., энантиомеры (антиподы), рацематы. Проекционные формулы Фишера, знак вращения и конфигурация 2-бутанола. Правила для определения относительной конфигурации. (R, S-система Кана — Ингольда — Прелога, правила старшенства. Соединения с двумя различными и одинаковыми ассиметрическими центрами (антиподы, рацематы, диастериоизомеры, мезоформы. Симметрия — закон диалектики.

Геометрическая изомерия (цис-, транс или Z, E) на примере 2-бутена. Физические и химические свойства оптических и геометрических изомеров.

Конформационная изомерия. Причины заторможенного вращения вокруг σ-связи. Конформация, конформер, конформационный изомер. «Заторможенные» и «заслоненные» конформации этана и 1, 2-дихлорэтана.

Лабораторная работа (4 часа)

Собеседование по теме, решение задач и упражнений

ТЕМА 3. ТЕОРИЯ КИСЛОТ И ОСНОВАНИЙ БРЕНСТЕДА-ЛОУРИ (8 часов) *Лекция (4 часа)*

Сопоставление силы кислот H–HAl, H–O, H–N, H–C. Основность и нуклеофильность анионов элементов второго периода (F-; OR-; OR-;

Лабораторная работа (4 часа)

Собеседование по теме, решение задач и упражнений. Заслушивание докладов.

ТЕМА 4. МЕХАНИЗМЫ ОРГАНИЧЕСКИХ РЕАКЦИЙ (11 часов)

Лекция (3 часа)

Реакционные центры. Реакции замещения, присоединения и элиминирования Реакции замещения электрофильного замещения. Реакции нуклеофильного замещения, Реакции радикального присоединения. Реакции отщепления. Реакции циклоприсоединения. Реакции радикального присоединения. Реакции отщепления. Реакции циклоприсоединения. Нуклеофильное замещение в алифатическом ряду. Механизмы SN1 и SN2, смешанный ионно-парный механизм. Моно- и бимолекулярные процессы нуклеофильного замещения в ароматическом ряду. Катализ переходными металлами. Реакции элиминирования (отщепления). Механизмы гетеролитического элиминирования Е1 и Е2. Присоединение по кратным углерод-углеродным связям. Электрофильное присоединение. Сильные и слабые электрофилы, механизм и стереохимия присоединения Лабораторная работа (8 часа)

Собеседование по теме, решение задач и упражнений

ТЕМА 5. ТЕРМОДИНАМИКА И КИНЕТИКА ОРГАНИЧЕСКИХ РЕАКЦИЙ (7 часов) *Лекция (3 часа)*

Интермедиаты химических реакций. Термодинамика и кинетика органических реакций. Энергетический профиль химических реакций. Интермедиаты химических реакций *Лабораторная работа (4 часа)*

Собеседование по теме, решение задач и упражнений

ТЕМА 6. СУПРАМОЛЕКУЛЯРНАЯ ХИМИЯ, ВОЗНИКНОВЕНИЕ, РАЗВИТИЕ, ПЕРСПЕКТИВЫ (10 часов)

Лекция (4 часа)

Определения понятия дисциплины. Исследования, заложившие основы супрамолекулярной химии. Супермолекулы, рецепторы, субстраты. Молекулярное распознавание. Самосборка и самоорганизация супрамолекулярных систем. Современное состояние и тенденции развития.

Краун-эфиры. Краун-эфиры, историческая справка. Номенклатура краун-эфиров. Получение краун-эфиров. Применение краун-эфиров.

Клатраты. Строение, свойства и применение клатратов.

Фуллерены. Строение фуллеренов и свойства фуллеренов. Получение фуллеренов и их применение.

Лабораторная работа (6 часа)

Собеседование по теме, решение задач и упражнений. Заслушивание докладов.

5. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

В процессе изучения дисциплины используются как традиционные, так и инновационные технологии, активные и интерактивные методы и формы обучения: технология объяснительно-иллюстративного объяснений с элементами проблемного изложения, технология профессионально-ориентированного обучения, лекции, объяснительно-иллюстративный метод с элементами проблемного изложения, контрольные и лабораторные работы, коллоквиум.

6. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ 6.1 Организация самостоятельной работы студентов

Темы занятий	Количество часов		Содержание	Формы		
			самостоятельной	контроля СРС		
	D	TC		работы		
	Всего	Конт.	Сам.			
		работа	работа			
		II rayne	III cemec	- Ph		
	II курс III семестр					
	32	6	26	проработка	Собеседование.	

Тема 1. Структурная изомерия. Таутомерия.				материала, изложенного в лекции	
Тема 2. Стереоизомерия. Оптическая изомерия. Конформационная изомерия. Геометрическая изомерия.	46	10	36	проработка материала, изложенного в лекции	Собеседование
Тема 3. Теория кислот и оснований Бренстеда — Лоури.	39	6	33	проработка материала, изложенного в лекции	Собеседование. Подготовка сообщений
Подготовка к зачету	9				
ИТОГО:	126	22	95		
		ІІ курс	IV семе	стр	
Тема 4. Механизмы органических реакций.	22	10	12	проработка материала, изложенного в лекции	Собеседование.
Тема 5.Термодинамика и кинетика органических реакций	19	6	13	проработка материала, изложенного в лекции	Собеседование.
Тема 6. Супрамолекулярная. Возникновение, развитие, перспективы.	22	6	16	проработка материала, изложенного в лекции	Собеседование. Подготовка сообщений
Подготовка к экзамену:	27				
ИТОГО:	90	22	41		
ВСЕГО;	216	44	136		

6.2 Организация текущего контроля и промежуточной аттестации

Проверка качества усвоения знаний проводится в устной и письменной форме. При изучении курса контроль осуществляется путем:

- устных опросов на лабораторных занятиях;
- тестовый контроль.

Такой контроль дает преподавателю основание объективной оценки знаний студента при допуске к зачету.

Вариант тестового контроля по теме «Изомерия» «Теория кислот и оснований»

- 1. Расположить вещества в ряд по увеличению числа оптических изомеров:
 - а) глюкоза
 - б) винная кислота
 - в) молочная кислота
 - г) фруктоза
- 2. Соединение, обладающее оптической активностью, должно иметь в своем составе:
 - а) кратную связь
 - б) карбонильную группу
 - в) асимметрический атом углерода
 - г) бензольное кольцо
- 3. Самый распространенный тип химической связи в молекулах органических соединенийхимическая связь. (ковалентная)
- 4. Установите наличие или отсутствие хиральных атомов в молекулах:
 - а) 2-хлорпентан

- б) 3-метилциклопентанол
- в) 3-хлорпентан
- г) 1,1,2-триметилциклобутан
- 5. Изобразите энантиомеры и обозначьте их конфигурацию по $R,\,S$ –номенклатуре для бромфторхлорметана.
- 6. Из перечисленных ниже частиц выберите кислоты Льюиса:
 - a) ${}^{+}O(C_2H_5)_3$
 - б) ⁺NR₄
 - B) Br₂
 - г) ZnCl₂
- 7. Из перечисленных ниже частиц выберите основания Льюиса:
 - a) ${}^{+}O(C_2H_5)_3$
 - б) ⁺NR₄
 - B) Br₂
 - г) ZnCl₂

Элементы супрамолекулярной химии

- 1. Соответствие между определением и понятием супрамолекулярной химии:
- 1) гидрофобное электростатическое взаимодействие между функциональными группировками атомов
 - 2) комплексы макроциклических аминополиэфиров с катионами металлов и анионами
- 3) органические вещества, молекулы которых состоят из продетых друг в друга циклов, полученные на основе темплатного синтеза
- 4) ассоциация двух и более химических частиц, удерживаемых межмолекулярными силами
 - а) катенаны б) супрамолекула в) «стэккинг» г) криптаты д) ротоксаны

1	2	3	4
В	Γ	A	Б

- 2. Объемные атомные группировки, расположенные на концах молекулярной «нити» называются (стоперы, стопперы)
- 3. Хронологическая последовательность возникновения химических наук
 - а) химия ВМС
 - б) химия низкомолекулярных соединений (неорганическая и органическая)
 - в) супрамолекулярная химия
 - г) алхимия
- 3. Соответствие между классом супрамолекулярных соединений и группой, к которой он принадлежит
 - 1) криптанды
 - 2) сферанды
 - 3) ротоксаны
- а) неорганизованные б) самоорганизующиеся в) предорганизованные

1	2	3
a	В	Б

- 4. Впервые синтезировал краун-эфиры?
 - а) Ч. Педерсен
 - б) Ж.-М. Лен

- в) Д. Крам
- г) Ю.А. Овчинников

Примерный перечень тем докладов

- 1. История открытия и причины образования клатратов.
- 2. Природа клатратов, как соединений внедрения. Свойства клатратов. Газовые клатраты, их строение и свойства.
- 3. Предельные формулы клатратов. Требования к молекулам гостей.
- 4. Клатраты в природе.
- 5. Цеолиты. Строение и классификация. Использование цеолитов в промышленности.
- 6. Области применения супрамолекулярных соединений.
- 7. Методы синтеза криптандов.
- 8. Создание жестких трехмерных структур молекул «хозяина» сферандов. Их строение.
- 9. Металлорганические супрамолекулярные ансамбли.

Примерный перечень вопросов к зачету

- 1. Разделы стереохимии. Значение стереохимии. Виды пространственной изомерии.
- 2. Геометрическая изомерия. Е, Z номенклатура.
- 3. Оптическая изомерия. Основные понятия: конфигурация, плоскость симметрии, ось симметрии, центр симметрии, хиральность, рацемат, энантиомеры.
- 4. Определение относительной и абсолютной конфигураций для оптически активных веществ. R, S система.
- 5. Конформационная изомерия, примеры влияния конформаций на химические свойства веществ.
- 6. Основные теории кислот и оснований.
- 7. Классификация кислот Бренстеда. Факторы, влияющие на кислотность. Константа кислотности.
- 8. Классификация оснований Бренстеда. Факторы, определяющие основность. Константа основности.
- 9. Кислоты и основания Льюиса. Примеры реакций.
- 10. Теория ЖМКО. Примеры реакций.
- 11. Сравнение кислотных свойств воды, спиртов, фенолов и карбоновых кислот с точки зрения электронного строения их молекул.
- 12. Влияние электронодонорных и электроноакцепторных заместителей в углеводородном радикале на степень полярности связи О-Н.
- 13. Причины различной основности азотсодержащих соединений (алифатические и ароматические амины, аминокислоты, амиды карбоновых кислот, азотистые гетероциклические соединения, аммиак). Влияние характера заместителей на степень активности.
- 14. Изменения кислотно-основных свойств в гомологических рядах спиртов, аминов, карбоновых кислот.

Критерии оценки устного ответа на зачете

Зачтено	выставляется студенту, если он твердо усвоил основной материал			
	дисциплины, грамотно и по существу излагает его, не допускает			
	существенных неточностей в ответе на вопрос			
Не зачтено	если студент не знает значительной части программного материала,			
	допускает существенные ошибки.			

Примерный перечень вопросов к экзамену

1. Условия самопроизвольного протекания органических реакций.

- 2. Влияние на скорость органических реакций катализаторов.
- 3. Влияние на скорость органических реакций растворителей.
- 4. Типы реакционных центров в органических реакциях, их характеристика.
- 5. Понятие о механизме реакции. Определение и объяснение основных типов органических реакций.
- 6. Нуклеофильное замещение в алифатическом ряду. Механизмы SN1. Стереохимия процесса.
- 7. Нуклеофильное замещение в алифатическом ряду. Механизмы SN2. Стереохимия процесса.
- 8. Механизмы нуклеофильного замещения, смешанный ион-парный механизм. Зависимость соотношения этих механизмов от структуры, полярности и природы растворителя.
- 9. Элиминирование. Стереохимия, стереоэлектронные требования. Зависимость скорости реакции и структуры получающихся продуктов от механизма.
- 10. Присоединение по кратным углерод-углеродным связям. Электрофильное присоединение. Сильные и слабые электрофилы, механизм и стереохимия присоединения.
- 11. Сильные и слабые электрофилы, механизм и стереохимия присоединения. Региоселективность присоединения (правило Марковникова) его объяснение с классических позиций и в теории граничных орбиталей.
- 12. Типовые реакции электрофильного замещения в ядре бензола, их механизмы и кинетика. Ориентация; роль электронных и пространственных эффектов.
- 13. Сравнение условий протекания и особенности механизмов галогенирования алканов, алкенов, аренов. Механизмы S_R ; A_E ; S_E 2. Стадии процессов и энергетический профиль реакции.
- 14. Понятие о супрамолекулярной химии: задачи и место среди химических наук, объекты изучения, типы и классы супрамолекулярных веществ, их свойства и применение.

Критерии оценки устного ответа студента на экзамене

Отлично — Все вопросы раскрыты полностью; — Обучающийся владеет основными теориями и глубоко понимает их содержание; — Имеет ясное представление связи теории и практики в рамках излагаемого материала; — Уверенно владеет необходимыми методами решения конкретных задач, может проиллюстрировать основные положения теории конкретными примерами; — Ясно и четко дает основные определения. Владеет терминологическим и понятийным аппаратом; — Развернуто отвечает на дополнительные вопросы.

Хорошо — Вопросы раскрыты по существу; — Обучающийся в целом владеет основными теориями и понимает их содержание; — Имеет общее представление о связи теории и практики в рамках излагаемого материала; — Владеет в целом необходимыми методами решения конкретных задач, может проиллюстрировать основные положения теории конкретными примерами; — В достаточной мере владеет понятийным и терминологическим аппаратом; — Имеет затруднения при ответе на дополнительные вопросы.

Удовлетворительно — Вопросы раскрыты, но не полностью; — Слабое понимание связи теории и практики; — Обучающийся может проиллюстрировать основные положения теории конкретными примерами, но имеет затруднения при решении некоторых задач; — Обучающийся не демонстрирует уверенного владения понятийным и терминологическим аппаратом; — Дополнительные вопросы вызывают затруднение.

Неудовлетворительно — Большая часть вопросов не раскрыта; — Обучающийся не может проиллюстрировать основные положения теории конкретными примерами, не может применить теорию при решении конкретных задач; — Нет ответов на дополнительные вопросы.

7. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ

Основная литература

- **1.** Березин Д. Б., Шухто О. В., Сырбу С. А., Койфман О. И. Органическая химия. Базовый курс: Учебное пособие. 2е изд., испр. и доп. СПб.: Издательство «Лань», 2014. 240 с
- **2.** Иванов В. Г. Органическая химия [Текст] : [учебное пособие для студентов вузов, обучающихся по специальности 032400 "Биология"] / В. Г. Иванов, В. А. Горленко, О. Н. Гаева, 2006. 620 с.

Дополнительная литература

- 1. Органическая химия [Текст] : учебник для вузов по специальности "Фармация" / под ред. Н. А. Тюкавкиной. Москва : Дрофа, 2008. Кн. 1 : Основной курс / В. Л. Белобородов, А. П. Лузин, С. Э. Зурабян. 4-е изд., стер. 2008. 638 с.
- 2. Органическая химия [Текст] : учебник для вузов по специальности "Фармация" / под ред. Н. А. Тюкавкиной. 4-е изд., стер. Москва : Дрофа, 2008. Кн. 2 : Специальный курс / В. Л. Белобородов [и др.]. 2-е изд., стер. 2008. 591 с.
- 3. Шабаров Ю. С. Органическая химия [Электронный ресурс] : учеб. Электрон. дан. Санкт-Петербург : Лань, 2011. 848 с.
- 4. Портал для химиков [Электронный ресурс]: Режим доступа: http://www.chemport.ru.-Загл. с экрана.
- 5. Химики Википедия [Электронный ресурс]: Режим доступа: http://ru.wikipedia.org/wiki. Загл. с экрана.
- 6. ChemNet" российская информационная сеть [Электронный ресурс]: Режим доступа: http://www.chem.msu.su. -Загл. с экрана.
- 7. Словари и энциклопедии на Академике[Электронный ресурс]: Режим доступа: http://dic.academic.ru.-Загл. с экрана.
- 8. Химик. Сайт о химии. [Электронный ресурс]: Режим доступа: http://www.xumuk.ru. Загл. с экрана.
- 9. Планирование и расчет химического синтеза, работа со справочной литературой по химии. [Электронный ресурс]: Режим доступа: http://www.ido.tsu.ru —
- 10. Описание синтезов органических и неорганических веществ. [Электронный ресурс]: Режим доступа:. http://www.chemexpress.fatal.ru —
- 11. Теория и практика синтезов химических соединений. [Электронный ресурс]: Режим доступа: http://www.xumuk.ru/ —
- 12. Синтезы неорганических соединений. [Электронный ресурс]: Режим доступа: http://www.alhimik.ru/ –
- 13. 10. Интерактивный мультимедиа учебник «Органическая химия» [Электронный ресурс]: Режим доступа: http://www.chemistry.ssu.samara.ru/ -
- 14. Максимов, А.И. Современные проблемы химии [Электронный ресурс] : учеб. пособие Электрон. дан. Иваново : ИГХТУ, 2009. 155 с. Режим доступа: https://e.lanbook.com/book/4511. Загл. с экрана.

8. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

- 1. Лекционная аудитория 412А.
- 2. Компьютер (ноутбук).
- 3. Мультимедиапроектор.
- 4. Презентации к лекциям и практическим занятиям.
- 5. Лаборатория для проведения лабораторного практикума 415А
- 6. Периодическая система химических элементов Д.И. Менделеева.