Министерство просвещения Российской Федерации Нижнетагильский государственный социально-педагогический институт (филиал)

федерального государственный социально-педагогический институт (филиал федерального государственного автономного образовательного учреждения высшего образования

«Российский государственный профессионально-педагогический университет»

Факультет естествознания, математики и информатики Кафедра информационных технологий и физико-математического образования

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ **Б1.В.01.07 МЕТОДИКА ОБУЧЕНИЯ РЕШЕНИЮ ОЛИМПИАДНЫХ ЗАДАЧ ПО МАТЕМАТИКЕ**

Уровень высшего образования Бакалавриат

Направление подготовки 44.03.01 Педагогическое образование

Профили Математика Форма обучения заочная

Автор доцент кафедры ИТФМ Т.Ю. Паршина

Одобрена на заседании кафедры информационных технологий и физико-математического образования. Протокол от «12» января 2024 г. №6.

Рекомендована к использованию в образовательной деятельности научно-методической комиссией филиала РГППУ в г. Нижнем Тагиле. Протокол от «23» января 2024 г. №5.

СОДЕРЖАНИЕ

1. Цель и задачи освоения дисциплины	4
2. Место дисциплины в структуре образовательной программы	4
3. Результаты освоения дисциплины	4
4. Структура и содержание дисциплины	6
4.1. Объем дисциплины и виды контактной и самостоятельной работы	6
4.2. Учебно-тематический план	6
4.3. Содержание дисциплины	6
5. Образовательные технологии	7
6. Учебно-методические материалы	8
6.1. Организация самостоятельной работы студентов	8
6.2. Организация текущего контроля и промежуточной аттестации	8
7. Учебно-методическое и информационное обеспечение	1(
8. Материально-техническое обеспечение лисшиплины.	1(

1. ЦЕЛЬ И ЗАДАЧИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Цель дисциплины:

- сформировать специальные компетенции у студентов на основе обучения их решению олимпиадных задач по математике;
- создать студентам условия для развития самопознания, самоопределения, самореализации;
- способствовать формированию у студентов таких качеств личности, как мобильность, умение работать в коллективе, ответственность.

Задачи:

- 1. Выявить и изучить основные идеи и методы решения олимпиадных задач по математике для школьников.
- 2. Дополнить знания студентов новыми фактами, необходимыми для решения олимпиадных задач по математике.
- 3. Развить у студентов умения осуществлять анализ собственной будущей профессиональной деятельности, осмысливать способы достижения результатов своей деятельности, анализировать затруднения, возникающие в процессе учебнопознавательной деятельности.
- 4. Ознакомить студентов с содержанием олимпиадной математики городского и областного уровня сложности.
- 5. Сформировать у студентов базовые методические умения, связанные с обучением школьников решению олимпиадных задач.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Дисциплина «Олимпиадные задачи по математике» является частью учебного плана по направлению подготовки 44.03.01 Педагогическое образование, профиль «Математика». Дисциплина включена в Блок Б.1 «Дисциплины (модули)» и является составной частью раздела «Часть, формируемая участниками образовательных отношений» модуля Б1.В.01. «Модуль профессиональной подготовки». Дисциплина реализуется в НТГСПИ на кафедре естественных наук и физико-математического образования.

Данная дисциплина логически связана с дисциплинами профиля «Математика» (Элементарная математика, Практикум решения задач по математике, Математический анализ, Алгебра и теория чисел, Линейная алгебра, Аналитическая геометрия, Геометрия, Теоретические основы школьной математики, Теория и методика обучения математике), которые изучаются на первом - пятом курсах.

3. РЕЗУЛЬТАТЫ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Дисциплина направлена на формирование и развитие следующих компетенций:

- УК-1. Способен осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач
- ПК-1. Способен осваивать и использовать теоретические знания и практические умения и навыки в предметной области при решении профессиональных задач.
- ПК-3. Способен формировать развивающую образовательную среду для достижения личностных, предметных и метапредметных результатов обучения средствами преподаваемых учебных предметов
- ПК-5. Способен организовывать индивидуальную и совместную учебно-проектную деятельность обучающихся в соответствующей предметной области

В результате освоения дисциплины обучающийся должен:

Знать:

- 31. Основные идеи и методы решения школьных олимпиадных задач по математике.
- 32. Требования к оформлению решения олимпиадных задач.

Уметь:

- У1. Интерпретировать информацию с позиции изучаемой проблемы.
- У2. Осуществлять поиск решения задач на вычисление и доказательство.
- У3. Применять основные методы для решения конкретного типа задач.
- У4. Оформлять решение типичных олимпиадных задач.
- У5. Решать нестандартные рациональные, иррациональные, показательные, логарифмические, тригонометрические уравнения и неравенства.

Владеть:

- В1. Навыками переработки учебной информации.
- B2. Навыками использования знаний курса элементарной математики в образовательном процессе в основной (базовой) и старшей (профильной) школе.
- ВЗ. Навыками применения основных математических методов анализа исследования, метода моделирования при решении задач.
- В4. Техникой тождественных преобразований алгебраических и трансцендентных выражений.
 - В5. Общей культурой построения графиков элементарных функций.
 - В6. Навыками геометрических вычислений.
 - В7. Навыками построения плоских фигур и их комбинаций.

4. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

4.1. Объем дисциплины и виды контактной и самостоятельной работы

Общая трудоемкость дисциплины составляет 3 зачётных единицы (108 часов), их распределение по видам работ представлено в таблице N 2.

Таблица № 2 Распределение трудоемкости дисциплины по видам работ

	Форма обучения
Вид работы	Очная, 5 курс
	9 семестр
Общая трудоемкость дисциплины по учебному плану	108
Контактная работа, в том числе:	18
Лекции	6
Практические занятия	12
Самостоятельная работа	86
Подготовка к зачёту с оценкой	4

Таблица № 3

4.2. Учебно-тематический план

Наименование разделов	Всего	Контактная работа		Сам.	Формы текущего			
и тем дисциплины	часов	Лекции Практич. ра		работа	контроля успеваемости			
			занятия					
5 курс, 9 семестр								
Тема 1 Основные идеи и	38	2	6	30	Решение задач у доски.			
методы решения					Проверка домашней			
олимпиадных задач по					работы, проверочные			
математике.					работы по теме,			
Чётность. Делимость и	6			2	индивидуальные			
остатки.					домашние работы.			
Логические задачи.	6			4	Выступление с докладом.			

Комбинаторика.	6	2	2	4	
Принцип Дирихле.	6			4	
Графы.	4		2	2	
Правило крайнего.	8			4	
Инвариант.	8			4	
Индукция.	8			4	
Игры.	6		2	2	
Тема 2. Олимпиадная	24	2	2	20	Решение задач у доски.
геометрия					Проверка домашней
Тема 3. Олимпиады	42	2	4	36	работы, проверочные
Задачи городской	8	1	2	18	работы по теме, индивидуальные
олимпиады 5-11 классы.	6	1	2	18	домашние работы.
Задачи областной олимпиады 9-11 классы.	0	1	2	10	домашние расоты.
Подготовка к зачёту	4			4	
Всего за семестр	108	6	12	90	

4.3. Содержание дисциплины

Тема 1. Основные идеи и методы решения школьных олимпиадных задач.

Чётность. Делимость и остатки. Чётность и нечётность в нестандартных задачах. Подсчёт двумя способами. Базовые задачи. Стандартные способы оформления решения задач. Теорема о делении с остатком. Разборы случаев, свойства делимости. Алгоритм Евклида. Простые и составные числа. Базовые задачи. Стандартные способы оформления решения задач.

Логические задачи. Задачи на рассуждения, переливания, взвешивания. Применение таблиц, цепочек, кругов Эйлера, графов к решению задач. Особенности оформления решения задач.

Комбинаторика. Сочетания, перестановки, размещения без повторений и с повторениями, правило суммы и правило произведения. Базовые задачи. Особенности оформления решения задач.

Принцип Дирихле. Частная, общая и непрерывная формы принципа Дирихле. Кролики и клетки. «Клетки» разной вместимости в решении задач. Базовые задачи. Особенности оформления решения задач.

Графы. Понятие графа; плоский, связный граф. Число нечётных вершин графа. Применение к решению задач.

Правило крайнего. Решение задач с конца, Рассмотрение крайних случаев (наибольший, наименьший, наиболее удалённый «элемент», различные проявления «экстремальности»). Базовые задачи. Особенности оформления решения задач.

Инвариант. Понятие инварианта и полуинварианта. Остатки от деления, чётность, раскраска — как инвариант. Особенности оформления решения задач.

Индукция. Полная и неполная индукция. Математическая индукция: основная форма, двойная и ветвящаяся индукция. Математическая индукция в доказательстве неравенств, задачах комбинаторики и геометрии. Базовые задачи.

Игры. Стратегия игры, математические игры, выигрышные позиции.

Тема 2. Олимпиадная геометрия.

Свойство ломаной, неравенство треугольника. Дополнительные построения при решении задач по геометрии. Свойства вписанных углов, касательных и хорд. Метод векторов и метод координат в решении задач на плоскости и в пространстве. Теоремы Чевы, Менелая, Стюарта. Комбинации многогранников и тел вращения.

Тема 3. Олимпиады.

Задачи городской олимпиады. Решение задач городской олимпиады 2016-2022 годов, математической карусели.

Задачи областной олимпиады. Решение задач областной олимпиады 2016-2022 годов, турниров городов, региональных турниров.

5. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

Процесс обучения дисциплине «Олимпиадные задачи по математике» рекомендуется строить с опорой на традиционный подход, при котором на практических занятиях ведется работа по усвоению теории и приобретению практических умений и навыков решения задач. При проведении занятий полезно связывать изучаемые вопросы с курсом методики обучения математике, создавать проблемные профессиональные ситуации.

С целью формирования у студентов компетенций, предусмотренных программой, следует применять следующие технологии:

- практикум с использованием практико-ориентированных задач;
- технологию деятельностного подхода;
- обучение в сотрудничестве.

6. УЧЕБНО-МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ

6.1. Организация самостоятельной работы студентов

Таблица № 4 Задания и методические указания по организации самостоятельной работы студента

	ŀ	Соличество ч	насов	Содержание	Формы
Темы занятий	Всего	Аудитор- ных	Самостоя т. работы	самостоятельной работы	контроля СРС
<i>Тема 1</i> . Основные идеи и	58	28	30	Проработка	Решение задач
методы решения школьных олимпиадных задач.				теории по конспекту. Подготовка к проверочным работам. Решение домашних задач. Выполнение индивидуального домашнего	у доски. Проверка домашней работы. Проверка проверочных работ. Проверка ИДЗ.
<i>T.</i> 2.0	27	1.0	1.7	задания (ИДЗ).	7
<i>Тема 2.</i> Олимпиадная геометрия	27	10	17	Проработка теоретического материала. Подготовка к проверочной работе. Решение домашних задач. Выполнение индивидуального домашнего задания (ИДЗ).	Решение задач у доски, проверка домашней работы. Проверка проверочной работы. Проверка ИДЗ.
<i>Тема 3</i> . Олимпиады	14	10	4	Проработка	Решение задач

				теории по учебнику. Подготовка к проверочной работе. Решение домашних задач. Выполнение индивидуального домашнего задания (ИДЗ).	у доски, проверка домашней работы. Проверка проверочной работы. Проверка ИДЗ.
Подготовка к зачёту	9		9	Подготовка к	Ответ на
				экзамену за	экзамене
				десятый семестр	
Итого	108	48	60		

6.2. Организация текущего контроля и промежуточной аттестации

Проверка усвоения знаний ведется на практических занятиях в письменной форме (опросы по теории) и устной форме в ходе обсуждения теоретических вопросов.

Промежуточная аттестация по данной дисциплине проводится в форме зачёта с оценкой (9 семестр).

Примеры тем для индивидуальных докладов на занятии:

- 1) Доказательство от противного.
- 2) Обратный ход.
- 3) Подсчёт двумя способами.
- 4) Соответствие.
- 5) Графы.
- 6) Алгоритм Евклида.
- 7) Покрытия и упаковки.
- 8) Разрезания и замощения.
- 9) Раскраски.
- 10) Процессы и операции.
- 11) Конструирование.
- 12) Цикличность.
- 13) Применение векторов (в том числе скалярного произведения) к решению задач. Координатно-векторный метод решения задач.
- 14) Текстовые задачи (недостаточные условия, ограничения, альтернативные условия).
- 15) Применение движения (симметрии, поворота) к решению задач планиметрии (стереометрии).
- 16) Применение гомотетии, подобия к решению задач планиметрии (стереометрии).
- 17) Применение свойств (периодичность, монотонность, ограниченность) функций к решению уравнений или неравенств.
- 18) Построение графиков функций (без исследования с помощью производной), графиков уравнений.
- 19) Площади многоугольников.
- 20) Правильные и полуправильные многоугольники.
- 21) Многочлены.
- 22) Неравенства: методы доказательства.
- 23) «Графические» задачи на смекалку (найди закономерность и т. п.).
- 24) Задачи на взвешивание и переливание.

Примеры заданий для проведения зачёта

- 1. Шесть ящиков занумерованы числами от 1 до 6. Сколькими способами можно разложить по этим ящикам 20 одинаковых шаров так, чтобы ни один ящик не оказался пустым?
- 2. На столе стоят 7 перевёрнутых стаканов. Разрешается одновременно переворачивать любые два стакана. Можно ли добиться того, чтобы все стаканы стояли правильно?
- 3. Муха забралась в банку из-под сахара в форме куба. Сможет ли муха последовательно обойти все 12 рёбер куба, не проходя дважды по одному ребру? Подпрыгивать и перелетать с места на место не разрешается.
- 4. Какое наибольшее число королей можно поставить на шахматной доске так, чтобы никакие два из них не били друг друга?
- 5. В розыгрыше первенства по волейболу команда A отстала от команды B на три места, команда B опередила B, но отстала от B, команда B опередила команду B. Какое место заняла каждая из этих шести команд?
- 6. Не решая уравнения $\sqrt{8-t} \sqrt{3-t} = 2$, найдите значение выражения $\sqrt{8-t} + \sqrt{3-t}$.
- 7. Определите значение a так, чтобы сумма квадратов корней уравнения $x^2 + (2-a)x a 3 = 0$ была наименьшей.
- 8. На 44 деревьях, расположенных по кругу, сидели по весёлому чижу. Время от времени какие-то два чижа перелетают на соседнее дерево один по часовой стрелке, а другой против. Могут ли все чижи собраться на одном дереве?
- 9. Одиннадцать вершин правильного 25-угольника отмечены красным цветом. Обязательно ли найдутся три отмеченные (красные) точки, которые являются вершинами некоторого равнобедренного треугольника?
- 10. Треугольник разрезали на выпуклые многоугольники, среди которых нет треугольников. Доказать, что среди них найдутся два многоугольника с одинаковым числом сторон.

Критерии оценки ответа студента на зачёте с оценкой:

За ответ на зачёте ставится оценка:

«отлично», если:

- все задачи, предложенные студенту, решены верно,
- все задачи, предложенные студенту, решены и решения не содержит грубых ошибок. **«хорошо»**, если:
- задачи в целом решены, но имеются 1-2 ошибки вычислительного характера; **«удовлетворительно»**, если:
- решена только часть задач, в некоторых решение не закончено.

«неудовлетворительно», если:

- студент решил менее половины предложенных задач.

7. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ

Основная литература

1. Горбачев, Н. В. Сборник олимпиадных задач по математике [Электронный ресурс] : — Электрон. дан. — М. : МЦНМО (Московский центр непрерывного математического образования), 2010. — Режим доступа: http://e.lanbook.com/books/element.php?pl1 id=9326

Дополнительная литература

1. Калашникова, А. Г. Поступаем в лицей. Сборник задач и упражнений по математике [Электронный ресурс] : учебно-методическое пособие / А. Г. Калашникова, Е. В. Подолян. — Электрон. текстовые данные. — Новосибирск: Новосибирский государственный технический университет, 2011. — 72 с. Режим доступа: http://www.iprbookshop.ru/44687.html

Сетевые ресурсы

http://www.zaba.ru

http://olympiads.mccme.ru http://acm.urfu.ru/vuzakadem/matem

http://fizmatolimp.ru http://math4school.ru

8. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

- 1. Лекционная аудитория 211 А.
- 2. Доска, мел, циркуль, линейка, транспортир. 3. Мультимедиа-проектор.